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Chapter 11

NUMERICAL DISSIPATION

Up to this point, we have emphasized the second-order centered-difference approxima-
tions to the spatial derivatives in our model equations. We have seen that a centered
approximation to a first derivative is nondissipative, i.e., the eigenvalues of the as-
sociated circulant matrix (with periodic boundary conditions) are pure imaginary.
In processes governed by nonlinear equations, such as the Euler and Navier-Stokes
equations, there can be a continual production of high-frequency components of the
solution. leading. for example, to the production of shock waves. In a real physical
problem, the production of high frequencies is eventually limited by viscosity. How-
ever, when we solve the Euler equations numerically, we have neglected viscous effects.
Thus the numerical approximation must contain some inherent dissipation to limit
the production of high-frequency modes. Although numerical approximations to the
Navier-Stokes equations contain dissipation through the viscous terms, this can be
insufficient, especially at high Reynolds numbers, due to the limited resolution which
is practical. Therefore, except at low Reynolds numbers, some form of added numer-
ical dissipation is required in the numerical solution of the Navier-Stokes equations
as well.

Since the addition of numerical dissipation is tantamount to intentionally intro-
ducing nonphysical behavior, it must be carefully controlled such that the error in-
troduced is not excessive. In this Chapter, we discuss some different ways of adding
numerical dissipation to the spatial derivatives in the linear convection equation and
a hyperbolic system of equations.
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180 CHAPTER 11. NUMERICAL DISSIPATION
11.1 One-Sided First-Derivative Space Differenc-
ing

We investigate the properties of one-sided spatial difference operators in the context
of the biconvection model equation given by

du Ju

— = —a— 11.1

ot er (11.1)
with periodic boundary conditions. Consider the following point operator for the
spatial derivative term

—a(byu); = %[—(1 + B)uj_1 + 28u; + (1 — Bujq]
— %[(_Uj—l + 1) + B(—ujo1 + 2u; — ujp)] (11.2)

The second form shown divides the operator into an antisymmetric component (—u;_1+
ujy1)/2Az and a symmetric component F(—u;_1 + 2u; — u;41)/2Az. The antisym-
metric component is the second-order centered difference operator. With 3 # 0. the
operator is only first-order accurate. A backward difference operator is given by 5 =1
and a forward difference operator is given by g = —1.

For periodic boundary conditions the corresponding matrix operator is

—a
—abd, = ——B,(—1 —3,28,1 —
a QAJ; p( :’8/ 5, /3>
The eigenvalues of this matrix are
- {ﬂ[l (27rm)]_|_. . (QWm)} ; 01 M1
m = cos(— 7 esin(— - or m=0,1,...,

If a is positive, the forward difference operator (8 = —1) produces Re()\,) > 0,
the centered difference operator (8 = 0) produces Re(),,) = 0, and the backward
difference operator produces Re(),,) < 0. Hence the forward difference operator is
inherently unstable while the centered and backward operators are inherently stable.
If a is negative, the roles are reversed. When Re(A,,) = 0, the solution will either
grow or decay with time. In either case, our choice of differencing scheme produces
nonphysical behavior. We proceed next to show why this occurs.
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11.2 The Modified Partial Differential Equation

First carry out a Taylor series expansion of the terms in Eq. 11.2. We are lead to the
expression

1 Ju , [0*u Az? [ Pu BAz* (9%
(6:)i = 334 [Qm (a—x)j—ﬂm (axz)f 3 (axa T \ae) T

We see that the antisymmetric portion of the operator introduces odd derivative

terms in the truncation error while the symmetric portion introduces even derivatives.
Substituting this into Eq. 11.1 gives

Ju ou  aBfAz0*u  aAz?Pu  aBAZ® I'u
— =—a—+ - + +... (11.3)
ot dx 2 Ox? 6 Oz 24 Qxt
This is the partial differential equation we are really solving when we apply the
approximation given by Eq. 11.2 to Eq. 11.1. Notice that Eq. 11.3 is consistent with

Eq. 11.1, since the two equations are identical when Az — 0. However, when we use

a computer to find a numerical solution of the problem, Az can be small but it is
not zero. This means that each term in the expansion given by Eq. 11.3 is excited to
some degree. We refer to Eq. 11.3 as the modified partial differential equation. We
proceed next to investigate the implications of this concept.

Consider the simple linear partial differential equation

Ju Ju 0%u 0u 0*u

ot - _aa? + l/axz + 78:{:3 + T@:z:“

(11.4)

Choose periodic boundary conditions and impose an initial condition u = ¢***. Under
these conditions there is a wave-like solution to Eq. 11.4 of the form

’LL(.I, t) — eimpe(T-I—is)t

provided r and s satisfy the condition

2 4

r+18 = —tak — VK —'17’7/4:3—|—7'/<;

or
r=—k*v—71k?), s=—k(a+K®)

The solution is composed of both amplitude and phase terms. Thus

4= ) i (aae) (11.5)

amplitude phase



182 CHAPTER 11. NUMERICAL DISSIPATION

It is important to notice that the amplitude of the solution depends only upon v and
7, the coefficients of the even derivatives in Eq. 11.4. and the phase depends only on
a and 7, the coefficients of the odd derivatives.

If the wave speed a is positive, the choice of a backward difference scheme (5 = 1)
produces a modified PDE with v — 7% > 0 and hence the amplitude of the solution
decays. This is tantamount to deliberately adding dissipation to the PDE. Under the
same condition, the choice of a forward difference scheme (3 = —1) is equivalent to
deliberately adding a destabilizing term to the PDE.

By examining the term governing the phase of the solution in Eq. 11.5. we see
that the speed of propagation is a + vx%. Referring to the modified PDE, Eq. 11.3
we have v = —aAxz?/6. Therefore, the phase speed of the numerical solution is less
than the actual phase speed. Furthermore, the numerical phase speed is dependent
upon the wavenumber k. This we refer to as dispersion.

Our purpose here is to investigate the properties of one-sided spatial differencing
operators relative to centered difference operators. We have seen that the three-
point centered difference approximation of the spatial derivative produces a modified
PDE that has no dissipation (or amplification). One can easily show, by using the
antisymmetry of the matrix difference operators, that the same is true for any cen-
tered difference approximation of a first derivative. As a corollary, any departure
from antisymmetry in the matriz difference operator must introduce dissipation (or
amplification) into the modified PDE.

Note that the use of one-sided differencing schemes is not the only way to in-
troduce dissipation. Any symmetric component in the spatial operator introduces
dissipation (or amplification). Therefore, one could choose 3 =1/2 in Eq. 11.2. The
resulting spatial operator is not one-sided but it is dissipative. Biased schemes use
more information on one side of the node than the other. For example, a third-order
backward-biased scheme is given by

1

GA;L’(
1
= Toag Huim2 = 8ujm1 + 8ujy — ujps)

+ (w2 — iy + 6uj — dujpn + ujpo)] (11.6)

(bpu); = Uj_g — 6uj_g + 3u; + 2u 1)

The antisymmetric component of this operator is the fourth-order centered difference
operator. The symmetric component approximates Az>u,..,/12. Therefore, this
operator produces fourth-order accuracy in phase with a third-order dissipative term.
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11.3 The Lax-Wendroff Method

In order to introduce numerical dissipation using one-sided differencing. backward
differencing must be used if the wave speed is positive and forward differencing must
be used if the wave speed is negative. Next we consider a method which introduces
dissipation independent of the sign of the wave speed, known as the Lax-Wendroff
method. This explicit method differs conceptually from the methods considered pre-
viously in which spatial differencing and time-marching are treated separately.
Consider the following Taylor-series expansion in time:
du 1 ,0% 3

u(t + h, a;)—u—l—hat + h 92 + O(h°)
First replace the time derivatives with space derivatives according to the PDE (in
this case, the linear convection equation 33—;‘ + ag—;‘ =0). Thus

Jdu du P*u ,0%

— = —a—, — =a"—
ot Oz’ ot? Ox?
Now replace the space derivatives with three-point centered difference operators, giv-
ing
1 aAt alAt
n+l _ n n n
R Y v I U (A—) (51 = 205+ vi)

This is the Lax-Wendroff method applied to the linear convection equation. It is a
fully-discrete finite-difference scheme. There is no intermediate semi-discrete stage.

For periodic boundary conditions, the corresponding fully-discrete matrix operator

7 B 1£t+<£t)2 _(aﬂf ! _a’_AtJr(“’_At)Q "
" P\ 2 | Az Ax ' Az /) "2 Ax Ax "

The eigenvalues of this matrix are

At\? 2 At . 2
Jm:1—<aA—$) [1 — cos( Lm)]—za—sin(ﬂ) for m=0,1,....M—1

1s

For |aAt| < 1 all of the eigenvalues have modulus less than or equal to unity and

hence the method is stable independent of the sign of a. The quantity |”‘AA;| is known

as the Courant (or CFL) number. It is equal to the ratio of the distance travelled by

a wave in one time step to the mesh spacing.
The nature of the dissipative properties of the Lax-Wendroff scheme can be seen
by examining the modified partial differential equation, which is given by
Ju Ju a Pu a’Al 0*u

ou ou_ _a, 2A Y 2 2
5 Ty = AT m @A) 5g — ——(As “A”ax t+-
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The two leading error terms appear on the right side of the equation. Recall that the
odd derivatives on the right side lead to unwanted dispersion and the even derivatives
lead to dissipation (or amplification, depending on the sign). Therefore, the leading
error term in the Lax-Wendroff method is dispersive and proportional to

a Pu aAz? Pu
——(Az? — a*At? =— 1 - CH—
6( v )@xS 6 ( n)@:vS
The dissipative term is proportional to
a’At 0*u a’AtAz? 0*u
_ Az? — a2AL2 _ 1 _c?
8 (Az® —a )03:4 8 ( Cn)ax“

This term has the appropriate sign and hence the scheme is truly dissipative as long
as C, < 1.

11.4 Upwind Schemes

In the preceding sections, we have seen that numerical dissipation can be introduced in
the spatial difference operator using one-sided difference schemes or, more generally,
by adding a symmetric component to the spatial operator. With this approach,
the direction of the one-sided operator (i.e.. whether it is a forward or a backward
difference) or the sign of the symmetric component depends on the sign of the wave
speed. When a system of hyperbolic equations is being solved, the wave speeds can be
both positive and negative. For example, the eigenvalues of the flux Jacobian for the
one-dimensional Euler equations are u, u+a, u—a. When the flow is subsonic, these are
of mixed sign. In order to apply one-sided differencing schemes to such systems, some
form of splitting is required. This is avoided in the Lax-Wendroff scheme. However,
as a result of their superior flexibility, schemes in which the numerical dissipation
is introduced in the spatial operator are generally preferred over the Lax-Wendroff
approach.

In the above development, we noted that the sign of a controls our choice of
the differencing type, (i.e. central or backward or forward). We again look at our
representative equation for convection

Ju Ju

where we do not make any assumptions as to the sign of a.
A safe bet is to rewrite Eq. 11.7 as

Jdu + _au_ . + a+|al
g Tl ta)gy =0 _( 2
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This gives us a decomposition into two terms one with a positive coefficient (a™)
and one with a negative coefficient (a~). Now for the a* > 0 term we can safely
backward difference and for the a= < 0 term forward difference. This is the basic
concept behind upwind methods, that is, some decomposition of the fluxes into terms
which have positive and negative characteristics so that appropriate differences can
be chosen.

11.4.1 Flux-Vector Splitting

Recall from Section 2.5 that a linear, constant-coefficient. hyperbolic system of partial
differential equations can be decoupled into characteristic equations of the form

ow; ow;
NS =0 (11.8)

In order to apply a one-sided or biased spatial differencing scheme, we need to apply

a backward (or backward-biased) difference if the wave speed, );, is positive and
a forward (or forward-biased) scheme if the wave speed is negative. In order to
accomplish this. let us split the matrix of eigenvalues, A, into two components such
that

A=At +A" (11.9)

where

A+ A _ A—A]
. A= 11.1
2 2 (11.10)

A/\-I— —

With these definitions, AT contains the positive eigenvalues and A~ contains the neg-
ative eigenvalues. We can now rewrite the system in terms of characteristic variables
as

Jdw Jw Jw Jw Jw

— 4+ A —=— At —F+ A ——=0 11.11

R PR TH PR P (1L11)
Thus we have split the spatial terms into two components according to the sign of the
wave speeds. Premultiplying by X and inserting the product X~'X in the spatial

terms gives
0Xw N OXAT X1 Xw N OXA X" Xw
ol ox ox
With the definitions

=0 (11.12)

At = XATX !, A" = XA~ X! (11.13)
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and recalling that w = X 1u, we obtain

ou O0ATu 0OA u

— = 11.14
ot + oz + oz 0 ( )
Finally the split flux vectors are defined as
ft = Atu, fT=A"u (11.15)
and we can write
du oft 9f”
T T 11.1
ot + oz + dx 0 (11.16)

In the linear case, the definition of the split fluxes follows directly from the definition
of the flux, f = Au. In the case of the Euler equations, f is also equal to Au as a
result of their homogeneous property, as discussed in Appendix C.2. Note that

f=1t 4 (11.17)

Thus by applying backward differences to the f* term and forward differences to the
f~ term, we are in effect solving the characteristic equations in the desired manner.
This approach is known as flux-vector splitting. A scheme which applies one-sided
differencing in this or a similar manner is called an upwind scheme.

When an implicit time-marching method is used, the Jacobians of the split flux
vectors are required. In the nonlinear case,

aft af-
— £ AT, —— £ AT 11.1
du 7 AT Jdu 7 (11.18)
Therefore, one must find and use the new Jacobians given by
aft af-
ATt = =, A77T = — 11.19
du ' du ( )

For the Euler equations, ATt has eigenvalues which are all positive and A=~ has all
negative eigenvalues.

11.4.2 Flux-Difference Splitting

Another approach, more suited to finite-volume methods, is known as flux-difference
splitting. In a finite-volume method. the fluxes must be evaluated at cell bound-
aries. We again begin with the diagonalized form of the linear, constant-coefficient,
hyperbolic system of equations

Jw Jw
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The flux vector associated with this form is ¢ = Aw. Now, as in Chapter 5, we
consider the flux at the interface between nodes j and 7 + 1, g;11/2, as a function of
the states to the left and right of the interface, wy, and wg, respectively. The centered
approximation to g;41/2, which is nondissipative, is given by

(fr + fr) (11.21)

DN | —

gi+1/2 =

In order to obtain a one-sided upwind approximation, we require

' . )\i(wi)L if )\Z >0
(9:)i4172 —{ Alwim if A < 0 (11.22)
for each component of ¢g. This is achieved with
1 1
(9i)j4172 = 5)\2' [(wi)r + (w;)r] + §|)\Z| [(wi)r — (w;)R] (11.23)
or
1 1
gir1/2 = 5A (wr + wr) + S[A] (wr — wr) (11.24)

Now, as in Eq. 11.12. we premultiply by X to return to the original variables and
insert the product X' X after A and |A] to obtain

1 1
Xg]'+1/2 = §X1A1X_1X (wL + UJR> + §X|A|X_1X (UJL — 'LUR) (1125)
and thus
1 1
Jiv1y2 = 5 (fL+ fr)+ §|A| (ur, — ug) (11.26)
where
|A| = X|A|X_1 (11.27)

In the linear, constant-coefficient case, this leads to an upwind operator which is
identical to that obtained using flux-vector splitting. However, in the nonlinear case,
there is some ambiguity regarding the definition of |A| at the cell interface j + 1/2.
In order to resolve this. consider a situation in which the eigenvalues of A are all of
the same sign. In this case, we would like our definition of f;1;/s to satisfy

fL if )\Z'/S >0

fj+1/2 = { [ if s < 0 (1128)



188 CHAPTER 11. NUMERICAL DISSIPATION

This is obtained by the definition

fivije =5 (L + fr) + %IAJ‘H/QI (ur, —ug) (11.29)

DN | —

if Ajq/, satisfies
i — fr = Ajz1)2 (ur — up) (11.30)

For the Euler equations, Eq. 11.30 is satisfied by the flux Jacobian evaluated at the
Roe-average state given by

\/PLurL + /PRUR

u = (11.31)
VPL + /PR
JprH: + Rl
o= VPRt Prin (11.32)

NN

where u and H are the velocity and the total enthalpy. respectively.

11.5 Artificial Dissipation

We have seen that numerical dissipation can be introduced by using one-sided dif-
ferencing schemes together with some form of flux splitting. We have also seen that
such dissipation can be introduced by adding a symmetric component to an antisym-
metric (dissipation-free) operator. Thus we can generalize the concept of upwinding
to include any scheme in which the symmetric portion of the operator is treated in
such a manner as to be truly dissipative.

For example, let

—Ujg1 + 2uj — Ui

2Azx

(8%u), = M: (85u), =

2Azx

(11.33)

Applying 6, = 62 4 62 to the spatial derivative in Eq. 11.8 is stable if A; > 0 and
unstable if A\; < 0. Similarly, applying 6, = 62 — 67 is stable if A; < 0 and unstable if
A; > 0. The appropriate implementation is thus

Aiby = N6% + | \i]62 (11.34)

Extension to a hyperbolic system following the same procedure as in the previous two
sections gives

8.(Au) = 8(Au) + 8°(|AJu) (11.35)
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O f = 65f + 65(|Alu) (11.36)

where |A| is defined in Eq. 11.27. The second spatial term is known as artificial
dissipation. It is also sometimes referred to as artificial diffusion or artificial viscosity.
With appropriate choices of 6% and 62, this approach can be related to the upwind
approach. This is particularly evident from a comparison of Egs. 11.29 and 11.36.

It is common to use second-order centered differences for 62 and the following
operator for 62

€
(6ju); = E(U]‘_Q —duj_g + 6uj — dujpr + ujso) (11.37)

where ¢ is a problem-dependent coefficient. This symmetric operator approximates
eATUypp, and thus introduces a third-order dissipative term. With an appropriate
value of ¢, this often provides sufficient damping of high frequency modes without
greatly affecting the low frequency modes.

11.6 The Upwind Connection To Artificial Dissi-
pation

We develop this section in terms of the 1 dimensional Euler equations 2.5,

0Q 0E _0Q 049 _ (11.38)

PR T

It can be shown (as done below) that the upwind schemes have an equivalence
to central difference schemes with added dissipation. The central schemes are much
simpler and more flexible and are therefore desirable if the dissipation can be added
in an analogous fashion to the upwind schemes.

The plus - minus flux split will be used here to demonstrate flux splitting and the
dissipative nature of upwind schemes. The approach taken is to split the eigenvalue
matrix A of the flux Jacobians into two matrices, one with all positive eigenvalues
and the other with all negative eigenvalues. Then the similarity transformations X
are used to form new matrices AT, A~ as in Eq. 11.13. with

As+ Ayl
2

A/\:t —

The two matrices, AT and A~ have by construction all positive and all negative
eigenvalues, respectively.
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New flux vectors can be constructed as

E=AQ=(AT+A)Q=FE"+E~

Different type of spatial differencing can now be used for each of the new flux vectors.
One stable form is to use one sided backward differencing for the positive terms
and one sided forward differencing for the negative terms. The one-sided difference

operators are usually either first order accurate

U — U Uiir — s
b Yy j—1 Af . Yitl J
Vou; =——— and Al u;=-—"—
Az Az
or second order accurate
3., _ . 1.
& us = u; —2uj 1+ J U
i =
v Az
3.,,. . _ 1.,
§fu, — 2 uj +2ujp1 — 3 Ujpo
x ] AZL’

The plus-minus matrices, A* and A~ can be written as

i x (Ai |A|> o1 Ax A

2 2
which gives

141
2

Al

+_ oaxn A _E A
E—AQ—QQi Q—QiQQ

Examining the flux derivative
SET + 6B
where second order one sided difference approximations are chosen

& = (31 —4&7 '+ E£7Y)/(2Ax)
§f = (=3I +4ET —ETH)/(2A2)

with &€ the shift operator, i.e., E¥u; = ujq;.
Combining Eqs. 11.42 and 11.43 we have

5 (60 + 808 + (82— 60)141]

for the difference equation.

(11.39)

(11.40)

(11.41)

(11.42)

(11.43)

(11.44)
(11.45)

(11.46)
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It is easily shown that
(60 +60)/2 = (—ET2 4 48T — 471 + £7%)/(4Az) = 6, (11.47)

which is a second order central difference operator, but not the standard 3 point
central difference operator ¢,. The other term of Eq. 11.46 is of more interest, where

(68 —80)/2 = (ET2 —4ET + 61 —4E™" + £72)/(4Az) = 4; (A V) (11.48)
T

which is a fourth order difference stencil. The difference operators are defined as
Veu; =u; —ujr,  Agu; = ujp —uj

Now Eq. 11.46 can be written as

(&E + L(Axvgg)ﬂm@) (11.49)
1Az
The form now is a second order central difference term plus fourth order dissipa-
tion. The dissipative term is a natural consequence of the upwind differencing. It
is interesting to note that the central difference term Eq. 11.47 is not the standard
three point difference. If first order formulas are employed for the upwind differences
then a similar analysis would produce the standard second order three point central
differencing plus a second order dissipative term. For instance, Eq. 11.49 is replace

by

1
(51,]5 _ E(AIVI)VHQ) (11.50)

We note a number of things from the form of Eqgs. 11.49 and 11.50 which can
guide us in developing artificial dissipation models for a central difference scheme.
Adding fourth order dissipation to a central difference produces the equivalent of
some second order upwind scheme. The use of second order dissipation can produce
a first order upwind equivalent. Research has shown that applying flux limiters to
upwind schemes and some of the TVD concepts suggest that the best approach for an
upwind algorithm is to use a locally first order upwind difference at a shock and second
order elsewhere. This can be accomplished by some switching and transitioning of
second order and fourth order dissipation added to a central scheme. The coefficients
for the dissipation parts of Eqs. 11.49 and 11.50 suggest some sort of flux Jacobian
scaling where for instance a spectral radius of the Jacobians could be used.



